Incorporating a local-statistics-based spatial weight matrix into a spatial regression model to predict the distribution of invasive Rosa multiflora in the Upper Midwest forestlands

Weiming Yu, Zhaofei Fan, W. Keith Moser


In this study, we extended the spatial weight matrix defined by Getis and Aldstadt (2004) to a more general case to predict the distribution of non-native invasive Rosa multiflora among the Upper Midwest counties in a spatial lag model (SLM) context. Both the simulation study and the application to invasive Rosa multiflora data collected in 2005-2006 proved that the modified spatial weight matrix outperforms its original case in diagnostic statistics and resultant invasion maps. The geographical distribution of invasive Rosa multiflora in the Upper Midwest was significantly associated with latitude; local clusters (a group of counties) of high presence/abundance of Rosa multiflora were significantly determined by TRPF (a ratio of road density to percentage of forest cover at the county level), a variable reflecting the intensity of human disturbance. As a conclusion, the SLM model incorporating the modified spatial weight matrix has potential applications in mapping spatial data with strong clustering patterns and estimating spatial autocorrelation structure and covariate effect in ecological studies.   




invasive plants, local spatial statistics, spatial autocorrelation, spatial weight matrix

Full Text:



Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control.19 (6): 716–723.

Aldstadt, J., and A. Getis. 2006. Using AMOEBA to create a spatial weights matrix and identify spatial clusters. Geographical Analysis. 38: 327–343.

Anselin, L. 1988. Spatial Econometrics: Method and Models. the Netherlands: Kluwer Academic Publishers.

Anselin, L., and A. Bera. 1998. Spatial dependence in linear regression models with an introduction to spatial econometrics. In Handbook of applied economic statistics, Ullah. A. (eds.). Marcel Dekker, New York.

Bivand, R. S., E. J. Pebesma, and V. Gomez-Rubio. 2008. Applied spatial data analysis with R. Springer, New York.

Bowman's Hill Wildflower Preserve (BHWP). 1997. Multiflora rose - invasive exotics. Available online at:; last accessed: Sept. 29, 2011.

Buhlmann, P. 2006. Boosting for high-dimensional linear models. The Annals of Statistics. 34(2):559 – 583

Carl, G., and I. Kühn. 2007. Analyzing spatial autocorrelation in species distributions using Gaussian and Logit models. Ecological Modeling. 207(2-4): 159-170

Denight, M. L., P. J. Guertin, D. L. Gebhart, and L. Nelson. 2008. Invasive Species Biology, Control, and Research, Part 2: Multiflora Rose (Rosa Multiflora). Available online at; last accessed Sept. 29, 2011.

Doll, J. D. 2006. Biology of Multiflora Rose. P. 239 in North Central Weed Science Society Proceedings. Available online at last accessed Sept. 29, 2011.

Fan, Z., W. K. Moser, M. H. Hansen, and M. D. Nelson. 2013. Regional patterns of major non-native invasive plants and associated factors in Upper Midwest forests. Forest Science 59 (1): 38-49.

Fortin, M.J., M.R.T. Dale, and J. Hoef. 2006. Spatial analysis in ecology. Encyclopedia of environmetrics 4:2051-2058.

Gelbard, J. L. and J. Belnap. 2003. Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology. 17(2): 420-432.

Getis, A., and J. K. Ord. 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis. 24(3):189-206.

Getis, A., and J. Aldstadt. 2004. Constructing the spatial weights matrix using a local statistic. Geographical Analysis. 36(2):90-104.

Haining, R. P. 2003. Spatial data analysis: theory and practice. Cambridge University Press, Cambridge, United Kingdom.

Holloway, G., and M. L. A. Lapar. 2007. How big is your neighborhood? Spatial implications of market participation among Filipino smallholders. Journal of Agricultural Economics. 58(1):37-60.

Keitt, T. H., O. N. Bjørnstad, P. M. Dixon, and S. Citron-Pousty. 2002. Accounting for spatial pattern when modeling organism-environment interactions. Ecography. 25(5): 616–625.

Kissling, W. D., and G. Carl. 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography. 17(1): 59–71.

Kostov, P. 2010. Model boosting for spatial weighting matrix selection in spatial lag models. Environment and Planning B: Planning and Design. 37(3):533-549.

Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology. 74(6): 1659-1673.

LeSage, J. P., and O. Parent. 2007. Bayesian model averaging for spatial econometric models. Geographical Analysis. 39(3): 241-267.

Lu, J., and L. Zhang. 2010. Evaluation of parameter estimation methods for fitting spatial regression models. Forest Science 56(5): 505-514.

Lu, J., and L. Zhang. 2011. Modeling and prediction of tree height-diameter relationships using spatial autoregressive models. Forest Science 57 (3): 252-264.

Macdonald, I. A. W. 1994. Global change and alien invasions: Implications for biodiversity and protected area management. In Biodiversity and global change, Solbrig, O. T., P. G. van Emden, and W. J. van Oordt. Wallingford-Oxon, UK: CAB International.

Mortensen, D. A., E. Rauschert, A. N. Nord, and B. P. Jones. 2009. Forest roads facilitate the spread of invasive plants. Invasive Plant Science and Management. 2(3):191–199.

Moser, W. K., M. H. Hansen, M. D. Nelson, and M. H. William. 2008. Relationship of invasive groundcover plant presence to evidence of disturbance in the forests of the upper Midwest of the United States. P. 29-58 in Invasive Plants and forest ecosystems, Kohli, R.H., S. Jose , H. P. Singh, and D. R. Batish. CRC Press, Boca Raton, FL.

Munger, G. T. 2002. Rosa multiflora. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory; Available online at; last accessed Sept. 29, 2011.

Ord, J. K., and A. Getis. 1995. Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis. 27(4): 286-306.

Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic costs Associated with alien-invasive species in the United States. Ecological Economics. 52(3): 273–288.

R Development Core Team. 2011. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL

Richardson, D. M., and P. Pyšek. 2006. Plant invasions: Merging the concepts of species invasiveness and community invisibility. Progress in Physical Geography. 30: 409-431.

Saunders, S. C., M. R. Mislivets, J. Chen, and D. T. Cleland. 2002. Effects of roads on landscape structure within nested ecological units of the northern Great Lakes region, USA. Biological Conservation. 103(2):209–225.

Stakhovych, S., and T. H. A. Bijmolt. 2009. Specification of spatial models: A simulation study on weights matrices. Papers in Regional Science. 88(2):389–408.

Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography. 46:234–240.

Vermeij, G.J. 1996. An agenda for invasion biology. Biological Conservation 78:3-9.

Von der Lippe, M., and I. Kowarik. 2007. Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conservation Biology. 21(4):986–996.

Waller, L. A., and C. A. Gotway. 2004. Applied Spatial Statistics for Public Health Data. John Wiley & Sons, Inc.

Watkins, R. Z., J. Chen, J. Pickens, and K. D. Brosofske. 2003. Effects of roads on understory plants in a managed hardwood landscape. Conservation Biology. 17(2): 411-419.

Zhang, L., J. H. Gove, and L. S. Heath. 2005. Spatial residual analysis of six modeling techniques. Ecological Modelling 186:154-177.

Zhang, L., Z. Ma, and L. Guo. 2009. Spatial autocorrelation and herterogeneity in the relationships between tree variables. Forest Science 55 (6): 533-548.


  • There are currently no refbacks.

© 2008 Mathematical and Computational Forestry & Natural-Resource Sciences